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Smoothed particle dynamics refers to Smoothed Particle Hydrodynamics (SPH) when sim-
ulating macroscopic flows and to Smoothed Dissipative Particle Dynamics (SDPD) when
simulating mesoscopic flows. When the considered flow is highly dissipative, this other-
wise very attractive method faces a serious time-step limitation. This difficulty, known
in literature as Schmidt number problem for Dissipative Particle Dynamics (DPD), prevents
the application of SDPD for important cases of liquid micro-flows. In this paper we propose
a splitting scheme which allows to increase significantly the admissible time-step size for
SPH and SDPD. Macroscopic and mesoscopic validation cases, and numerical simulations of
polymer in shear flows suggest that this scheme is stable and accurate, and therefore effi-
cient simulations at Schmidt numbers of order O(106) are possible.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Smoothed particle dynamics is a fully Lagrangian, grid free method, where a smoothing kernel is introduced to approx-
imate functions and their spatial derivatives from data carried by neighboring particles. It is referred to as Smoothed Particle
Hydrodynamics (SPH) when simulating macroscopic flows [1], and as Smoothed Dissipative Particle Dynamics (SDPD) when
simulating mesoscopic flows [2,3]. SDPD also can be viewed as a modification of Dissipative Particle Dynamics (DPD), a pop-
ular mesoscopic particle-based method [4]. Compared to DPD, in SDPD transport coefficients can be prescribed as input
parameters rather than being an indirect result of other model parameters. Thermal fluctuations can be introduced adap-
tively according to the size of the fluid particles.

When the smoothed particle dynamics method is used to simulate low-Reynolds-number and mesoscopic liquid flows,
the time-step size limit for stable time integration is usually determined by the viscous effects as such flows are highly dis-
sipative. Specifically, this issue is referred to as Schmidt number problem in DPD [5,6] and obviously also applies to SDPD.
The Schmidt number is defined as the ratio of momentum diffusivity (viscosity) and mass diffusivity
Sc ¼ l
Dq

; ð1Þ
where l is dynamic viscosity, q is density and D is the diffusion coefficient. Typical Sc number achieved by SDPD and DPD
simulations are of order O(1), which is similar to that of a gas rather than a liquid with Sc �O(103).

Peters [7] suggested that the diffusion coefficient D appearing in the definition of Sc refers to the molecular diffusivity and
therefore is an ill-defined quantity for coarse-grained systems. Accordingly, one would not need to achieve realistically
large Sc to capture correct hydrodynamic interactions [8–10]. However, it has been pointed out by Groot and Warren
[11] that in order to achieve a realistic liquid behavior it is essential to recover the correct magnitude of Sc in DPD simulation.
Furthermore, it was observed by Symeonidis et al. [5,12] that an agreement between simulations and experiments with
. All rights reserved.
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respect to the non-equilibrium properties of a DNA molecule in a shear flow requires Sc numbers with a magnitude of that
for a liquid.

For increasing Sc in DPD simulation one could generate a higher viscosity by increasing the stiffness of the conservative
force or the number density of DPD particles, or the dissipative force. Since the represented length scale decreases with the
increase of the former two quantities, these approaches contradict the intended coarse-graining property of the DPD method.
Therefore, a common approach for increasing Sc is to increase the magnitude of the dissipative force. However, if the DPD
particle velocity is updated explicitly, as in the traditional velocity-Verlet method [11], the time integration requires a very
small, computationally inefficient time-step size to achieve correct equilibrium properties. To cope with this difficulty,
Pagonabarraga et al. [13] have proposed an iterative method where the particle velocity is updated implicitly. However, it
is found that such a method is not very practical due to large computational cost. Lowe [14] developed an alternative
DPD method where the dissipative and random forces of the traditional DPD method are replaced by a pairwise momen-
tum-conservative Andersen thermostat, which relates the resulting viscosity to a prescribed random relaxation parameter.
Due to the Andersen thermostat the method recovers the correct kinetic temperature independently of the time-step size
and can be used for simulating a DPD fluid with high Sc. One issue of this method is that the deterministic dissipative term
in DPD is replaced by a stochastic term which may lead to strong spatial–temporal fluctuations of the dissipation rate when
the time-step size is large.

More recently, a splitting scheme for DPD was proposed by Shardlow [15]. While updating the contribution of the con-
servative force explicitly, similarly to that of Lowe’s method, this method updates the contributions of the dissipative and
random forces in pairwise fashion. By this procedure the original DPD formulation of dissipative and random forces is pre-
served. Nikunen et al. [16] showed that the accuracy and performance of Shardlow’s scheme is superior to that of several
other schemes commonly used in DPD. However, compared to that of Lowe’s method, the kinetic temperature is still signif-
icantly overestimated when a large time-step size is used. It is interesting to note that in an earlier work of Monaghan [17] a
splitting scheme similar to that of Shardlow [15] was described for handling the drag force on dust particles when modeling
dust-gas flow with an SPH method. To recover very large drag coefficients the pairwise interactions are computed by sweep-
ing over all the dust-gas particle pairs several times. Although this method originally has been developed for a drag-force
model an extension to general viscous flows appears to be straightforward.

In this work we present a splitting scheme for the smoothed particle dynamic method which can be viewed as a combi-
nation and extension of Shardlow’s and Monaghan’s schemes. The scheme achieves significantly larger time-step sizes than
is possible by the standard predictor–corrector and velocity-Verlet schemes, and can be applied for general macroscopic and
mesoscopic viscous flows. To demonstrate the robustness and efficiency of the method, a number of validation tests and
examples for macroscopic and microscopic flows are given.

2. SPH and SDPD

For SPH the temporal evolution of discrete-particle location and properties is given by
dri

dt
¼ vi; ð2aÞ
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; ð2cÞ
representing a Lagrangian discretization of the Navier–Stokes equations for isothermal, weakly compressible flow [3]. Here,
eij and rij are the normalized vector and distance from particle i to particle j, respectively. ri,vi,mi,qi and pi are position, veloc-
ity, mass, density and pressure of a particle i, respectively. ri is the inverse of particle volume, and Wij = W(rij,h) is a kernel
function with smoothing length h. An isothermal equation of state is given as
p ¼ p0
q
q0

� �c

þ b; ð3Þ
where p0,q0, b and c are parameters which may be chosen based on a scale analysis so that the density variation is less than a
given value, usually 1% [18].

Within the SDPD formulation [2] Eq. (2) presents the deterministic part of the particle dynamics. Using the GENERIC for-
malism [19,20] thermal fluctuations can be taken into account by postulating the following expressions for mass and
momentum fluctuations
d ~mi ¼ 0; ð4aÞ

dePi ¼
X

j

BijdWijeij; ð4bÞ
where dWij is the traceless symmetric part of a tensor of independent increments of a Wiener process, and Bij is defined as
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wherekB is Boltzmann constant and T is a prescribed fluid temperature [3]. Note that the evolution equations for SPH and
SDPD can be written in a generic form as
dvi ¼
1

mi
FC

i dt þ FD
i dt þ dePi

� �
; ð6aÞ
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is the dissipative force as given by the

right hand side of Eq. (2c)
When Eq. (6) is integrated by standard explicit schemes, such as a predictor–corrector scheme for SPH or velocity-Verlet

for SDPD, the time-step size is constrained by the Courant–Friedrichs–Lewy (CFL) condition
Dt 6 Dtc ¼ 0:25
h
c
; c ¼ 10Vmax; ð7Þ
where c is a chosen speed of sound, Vmax is the maximum flow speed, and
Dt 6 Dtl ¼ 0:125
qh2

l
: ð8Þ
Since typical micro-fluidic problems are characterized by very small Reynolds numbers and dominated by viscous effects
[18], it is desirable to relax the viscous time-step limit D tl for numerical simulation.

3. Splitting scheme

The fundamental concept of the splitting approach is that the contribution of the conservative force is updated separately
from that of the dissipative and the random forces (time-splitting). The latter are updated implicitly in a pairwise fashion
(operator-splitting).

The splitting scheme can be described as follows. First, an intermediate velocity ~vi, due to dissipative and random forces,
is obtained in a pairwise fashion by sweeping over all pairs of neighboring particles a certain number of times (Ns). For a
specific particle pair their velocities are updated according to the following two-step procedure. The first step is explicit,
and can be written as
v0i ¼ vi þ
1
2

1
mi

FD
ij DtNs þ
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; ð9aÞ
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where DtNs ¼ Dt=Ns is the sub-time-step size, and dePij is the momentum fluctuation between the particle pair. The second
step is implicit, and can be written as
~vi ¼ v0i þ
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where ~vi; ~vj on both sides of Eq. (10) are updated simultaneously. Monaghan [17] used an updating similar to Eq. (10), where
no thermal fluctuations are present and fFD

ij is given by a drag-force model rather than by an expression for a general viscous
force such as used here, see Eq. (2). As there are only two unknowns for two equations the solution of Eq. (10) is straight-
forward and stable, independently of DtNs . For l!1 the resulting velocities at the end of a single pair-update are
~vj ¼ ~vi ¼
mivi þmjvj

mi þmj
; ð11Þ
a property also obtained by Lowe [14] after relaxation and before thermalization.
Using ~vi, a half-time-step velocity is obtained from half of the conservative-force acceleration (first part of velocity-Verlet

scheme)
vnþ1=2
i ¼ ~vi þ

1
2

1
mi

FC
i Dt; ð12Þ
where D t is time step, and FC
i is the total conservative force evaluated from the particle position rn

i . The new-time-step par-
ticle position is updated
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rnþ1
i ¼ rn
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i Dt: ð13Þ
At last, the new-time-step velocity is obtained from
vnþ1
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i þ 1
2

1
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i Dt; ð14Þ
where FC;nþ1
i is evaluated at the new-time-step particle position rnþ1

i .
Eq. (10) is an operator-splitting approach similar to that of Shardlow [15] where the particle velocities are solved implic-

itly and locally in a pairwise fashion instead over the entire domain. An important difference is that here the pairwise updat-
ing of the particle velocities is performed in Ns sweeps for all particle pairs. For macroscopic flow simulations, optimum
accuracy can be obtained by an adaptive sweeping scheme following Whitehouse et. al. [21]. For every time step consecu-
tively Ns = 2m and Ns ¼ 2mþ1 sweeps are performed, with m increasing until the relative error between the evaluated veloc-
ities is less then a specific dimensionless tolerance e. The last calculated velocity is adopted and at the next time step the
index m is decreased by one. It is found that a tolerance e = 5 � 10�3 gives a good compromise between computational effi-
ciency and accuracy. Note that the relaxed viscous stability on one hand allows for large time-step sizes, on the other hand
may increase the temporal truncation error for large time-step sizes. For mesoscopic flow simulations, it is difficult to specify
discrete tolerance e a priori. For such cases our numerical experiments, as also will be shown in next sections, suggest that a
fixed parameter Ns = 5 is sufficient to achieve Sc up to order O(106).

4. Validation tests

The splitting scheme is tested by macroscopic Poiseuille and Couette flows and a mesoscopic temperature control test. For
the macroscopic cases, the overall accuracy is measured by using an L1-norm error defined as
L1 ¼
PN

i¼1 Uth
i � USPH

i

��� ���PN
i¼1 Uth

i

��� ��� ; ð15Þ
where Uth
i ;U

SPH
i are the theoretical and the simulated velocity fields evaluated at the particle positions ri, and N is the total

number of particles. For the mesoscopic case the accuracy of the splitting scheme is measured by the difference between the
measured kinetic temperature of the SDPD particle and the input value. Another validation, which is considered as an impor-
tant issue in DPD [22], is the qualitative comparison between the computed radial distribution functions (RDF) of the SDPD
particles and that which is typically obtained for liquids.

4.1. Poiseuille flow

For the first macroscopic case we consider a Poiseuille flow between two walls at y = 0 and y = L. The flow is initially at
rest and suddenly driven by a constant body force F parallel to the x-axis. Periodic boundary conditions are employed in the
flow direction. The flow parameters are chosen as F = 10�4, L = 10�3, q = 103 and l = 10�6, which gives a maximum velocity at
steady state of Vmax = FL2/l. The Reynolds number is Re = Lvmax/g = 1.25 � 10�2, which is typical for micro-fluidic systems. A
series of simulations are performed with increasing particle numbers Nx = Ny = 10, 20, 40, 80 (note that the particles initially
are on a lattice), e = 5 � 10�3 and time-step sizes ranging from Dt ¼ Dtl ¼ 7:8125� 10�5 to 16Dtl.

A comparison between the computed velocity profile with Ny ¼ 40 and Dt ¼ 4Dtl at time tm ¼ 0:63 and the theoretical
solution is shown in Fig. 1(top). At this time the velocity profile is found to be very close to the steady state solution
[18]. Fig. 2 (top) and Fig. 3(top) show the behavior of L1-errors with increasing space and time resolution, which suggest
at least first-oder convergence.

4.2. Couette flow

For the second macroscopic test case we consider a Couette flow between two walls at y = 0 and y = L, where one wall is at
rest and the other is moving at constant speed V0. Periodic boundary conditions are employed in the flow direction. The
flow parameters are chosen as l ¼ 10�6;V0 ¼ 1:25� 10�5; L ¼ 10�3 and q ¼ 103, which gives a Reynolds number of
Re ¼ V0L=l ¼ 1:25� 10�2 as in the first case. Similarly as in the first case, a series of simulations are performed with
Nx ¼ Ny ¼ 10;20;40;80; e ¼ 5� 10�3 and time-step sizes ranging from Dt ¼ Dtl ¼ 7:8125� 10�5 to 16Dtl.

The comparison between SPH and the analytical solution of the velocity at time instant tm ¼ 0:06 is shown in Fig. 1 (bot-
tom). The L1-norm errors at tm ¼ 0:06 are shown in Fig. 2 (bottom) and Fig. 3 (bottom). Again, first-order convergence is
obtained.

4.3. Temperature control of SDPD fluid

A mesoscopic box of fluid is considered. The simulation parameters are kBT ¼ 1, box size is L = 1.25, density q = 1, number
of particles N ¼ 15� 15� 15 ¼ 3375, which give the input average thermal velocity v i

kin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3kBT=m

p
, where m is mass of a



Fig. 1. Comparison of SPH and theoretical solutions for the Poiseuille flow (top) and the Couette flow (bottom) at time tm = 0.63 and tm = 0.06, respectively
ðNy ¼ 40;Dt ¼ 4DtlÞ.

Fig. 2. Comparison of the L1-norm error for the Poiseuille flow (top) and Couette flow (bottom) as a function of NyðDt ¼ 4DtlÞ.

Fig. 3. Comparison of the L1-norm error for the Poiseuille flow (top) and Couette flow (bottom) as a function of DtðNy ¼ 40Þ.
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Fig. 4. Difference between the measured averaged kinetic temperature (solid line) and the input temperature (dash line) with increasing number of sweeps.

Fig. 5. Relation between the computed Schmidt number of the SDPD fluid and the inputed viscosity (the inversed values is shown on x axis).
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particle. In order to study the potential of the splitting scheme a large range of viscosities, from l = 6.25 to 2.2 � 103, has
been used. The time step used is based on the CFL condition and kept constant for all simulations. To obtain Sc from Eq.
(1), the self-diffusion coefficient is measured by fitting the mean-square displacement of the particles.

The relation of the number of sweeps Ns to the predicted kinetic temperature Tkin ¼ mv s
kin2=3kB, where v s

kin is the average
thermal velocity of the particles, for the maximum input viscosity l ¼ 2:2� 103 is shown in Fig. 4.

It is found that the measured kinetic temperature converges to the input value Tth with increasing Ns. Note that reason-
ably small errors below 5% are achieved with Ns = 5, where the total computational effort increases by less than 20%. Further
numerical experiments show that even fewer Ns sweeps are required for accurate temperature control at smaller viscosities.
The relation between Sc and the input viscosity is shown in Fig. 5, suggesting that a Sc of order O(106) has been achieved.

The computed RDF of the SDPD particles is shown in Fig. 6, which is not affected by the implicit treatment of the viscous
terms and preserves the shape typical for liquids.

5. Polymer in simple shear flow

In this case, the effect of Sc on a polymer chain in simple shear flow is studied. A mesoscopic box of fluid with a 5-bead
free polymer in simple shear is considered similarly as in [12]. The polymer is modeled by a chain of double-linked beads [9]
which have all properties of SDPD particles, and additionally are subjected to interaction forces with neighboring polymer
beads according to the FENE potential
UFENE ¼ �
1
2

kR2
0ln 1� r

R0

� �2
" #

; ð16Þ



Fig. 6. Computed radial distribution function for the SDPD fluid with l ¼ 2:2� 103 and Sc number of order O(106).

Table 1
Gyration radius of a free polymer in static solution and in simple shear flow.

Sc 1.225 � 103 2.5 � 103 2.5 � 105 1.0 � 106

hRgi 0.0048 0.0052 0.0048 0.0048

hRflow
g i 0.0057 0.0058 0.0092 0.0120
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where r is the distance between neighboring beads, R0 is the maximum spring extension, and k is the spring constant. This
model of polymer in suspension produces correct scaling laws for static and dynamic properties, see [9] for further details.
Other simulation parameters are kBT ¼ 1, box size L = 0.75, mass density q = 1, shear rate _c ¼ 0:5 and number of particles
N ¼ 15� 15� 15 ¼ 3375. Periodic boundary conditions are employed in the flow direction and the spanwise direction,
and a Lees–Edwards boundary condition [23] is applied at the upper and lower boundaries.

Table 1 summarizes the relations between the values of Sc and gyration radius of a free polymer in static solution hRgi and
in a simple shear flow hRflow

g i.
It is found that the average size of the polymer in static fluid is nearly independent of Sc. However, when the polymer is in

a shear flow, its gyration radius increases dramatically with Sc of the solvent, which is in good agreement with the results of
[12].
Fig. 7. Effect of Sc on the polymer density profile in Poiseuille flow, where x = 0 and 4 correspond the channel walls, for the cases Sc = 4.8 and 43,
respectively.
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6. Polymer in Poiseuille flow

The SDPD simulation of a polymer in a Poiseuille flow is set up in a box with dimensions Lx � Ly � Lz, where Ly = 4.0,
Lz = 8.0, and Lx = 4.0 is the distance between the walls (at y = 0 and y = Ly). The flow is driven by a body force in the direction
of the z axis. Periodic boundary conditions are employed in the flow direction and the spanwise direction. The number of
particles is Nx � Ny � Nz ¼ 10� 10� 20, and 20 of them were connected to form a polymer in dilute solution. To illustrate
the effect on the distribution of the polymer beads in the channel two simulations are performed with Sc of 4.8 and 43,
respectively. The spanwise distribution of polymer mass is shown in Fig. 7. It is found that the depletion region at the center
of the channel is more pronounced with low Sc, and the polymer concentration tends to be higher in the center with smaller
off-center peaks with high Sc. These results are in agreement with those in the recent study of Millan and Laradji [24], and
suggest a strong influence of Sc on the polymer behavior in a shear flow.

7. Concluding remarks

We have developed a splitting scheme for highly dissipative smoothed particle dynamics. In the time-splitting part of the
scheme, the contribution of the conservative force is updated separately from that of the dissipative and random forces. In
the operator-splitting part of the scheme the particle velocities are updated by sweeping over all particle pairs within the
domain in a pairwise fashion with an explicit/implicit two-step algorithm. The number of sweeps in the present scheme
is adjusted adaptively to achieve higher accuracy. Numerical experiments show that the present scheme has a great poten-
tial in addressing realistic dissipative mesoscopic flow problems without significantly increasing the computational effort.
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